

J. F. Tunicliffe Medal Presentation 2021 James Heslington

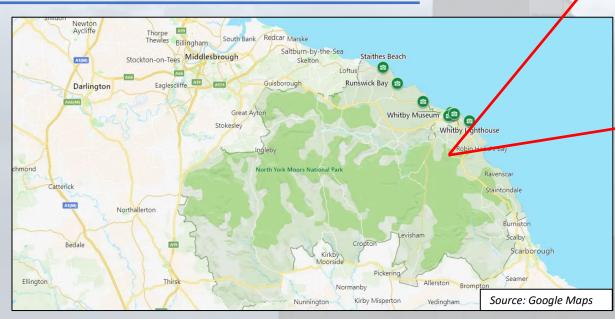
Aims

Project background/overview

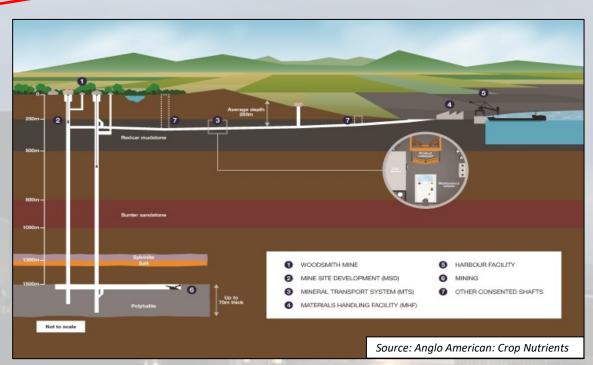
Personal involvement: Service Shaft Project Engineer

Engineering/ scope of the systems: muck handling, ventilation, dust collection, craneage, shaft protection, SBR/ shaft works

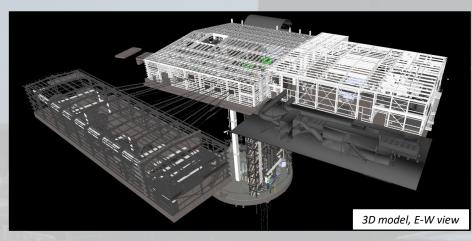
Considerations of each package: quality, environmental, safety

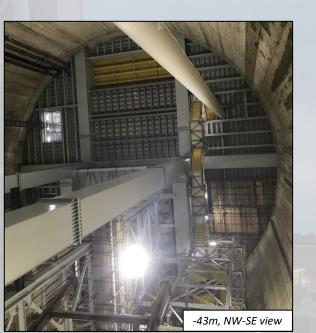


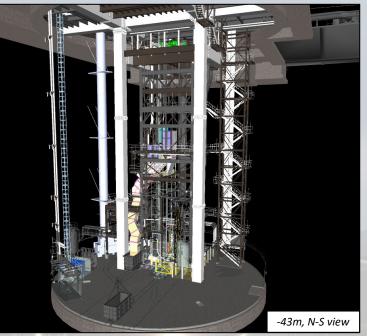
Discussion points


James Heslington

Project Overview Location/Background

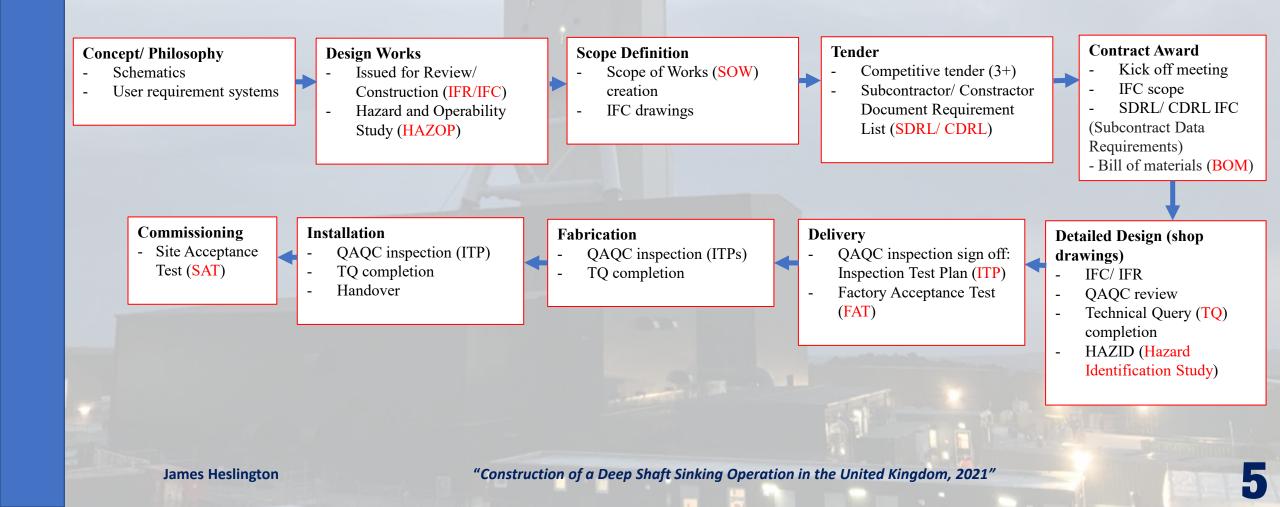



- Polyhalite deposit (late Permian deposition). POLY4 Anglo American Crop Nutrients.
- Proven 7% of deposit 2.69 billion metric tonnes (JORC).
- Service Shaft, SS, (1600m Shaft Boring Roadheader SBR), Production Shaft, PS (1600m - SBR), Mineral Transport Shaft, MTS, (360m - Galloway). SS fore shaft (-43m, 35m D), PS fore shaft (-43m, 32m D).

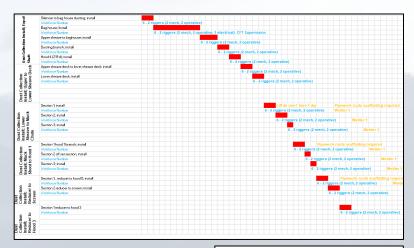

James Heslington

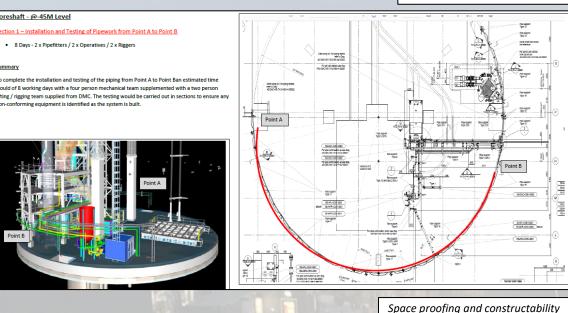
Project Involvement Service Shaft

- Package manager (engineering, budget, schedule, construction).
- Mechanical, electrical, instrumentation and structural scopes (vendor install/ free issue).
- 3rd party GA design/ space proofing self performed concept/ philosophy/ user requirement specification, self performed calculation checks, self performed installation/ management.
- Constructability, QAQC, technical queries.
- Operational engineering/ useability.



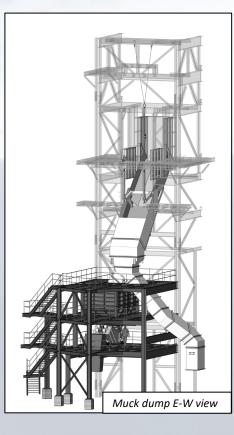
James Heslington


Engineering Basis – Phase I (Pre Construction) Process


Foreshaft Steel – Phase II (Construction) Engineering Scope

- Delivery/ constructability. Design 3rd party. 800t of steel (base).
- Back chargeable claims (clashes/ lost time/ reworks). Float 18 days.
- Simultaneous operations scheduled based on scope and available resource. Bottom-up construction. Interface and personnel number considered.
- Factor of Safety in shaft 10:1, General 5:1.

					_	
Concrete Delivery System		35	22-Aug-20	25-Sep-20		
SSCONST1660	Install slick line britts & line	2	22-Aug-20*	23-Aug-20 S		
SSCONST1670	Install slick linewalkway & Jib	2	23-Aug-20	24-Aug-20 S		
SSCONST1680	Install Maxon Mixer	7	14-Sep-20*	20-Sep-20 S		
SSCONST1690	Install Cocrete Pipe from Mixer to Sub-collar	6	20-Sep-20	25-Sep-20 S	alko .	
Collar Bldg Pre-assembly		6	28-Jul-20	02-Aug-20		
SSCONST1080	Collar Building Pre-Assembly	6	28-Jul-20*	02-Aug-20 D	MC	
Collar Bldg Erection		33	24-Jul-20	26-Aug-20		
SSCONST1630	Collar Install Phase 510	4	24-Jul-20*	27-Jul-20 D	MC	
SSCONST1640	Collar Install Phase 540	5	27-Jul-20*	31-Jul-20 D	MC	4
SSCONST1641	Tally Hut move	1	31-Jul-20	01-Aug-20 D	MC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SSCONST1090	Collar Building Erection Phase 103	5	09-Aug-20*	13-Aug-20 D	MC	
SSCONST1642	Crane Positioning on Vent Slab at /next to bldg	17	09-Aug-20	26-Aug-20 D	MC	
SSCONST1120	Collar Building Erection Phase 104	8	14-Aug-20	21-Aug-20 D	MC	
SSCONST1150	Collar Building Erection Phase 105	5	22-Aug-20	26-Aug-20 D	MC	
Foreshaft - Steel Erection		24	20-Jul-20 A	16-Aug-20		
SSCONST1010	Complete Checker plate drill / tap	6	20-Jul-20 A	29-bul-20 D	MC	
SSCONST1000	Install headframe steel left out for SBR including last part of W hare muck chute	9	24-Jul-20		MC	
SSCONST1020	Balance of Steel	4	24-Jul-20		MC	
SSCONST1730	SBR Platform Institut	4	13-Aug-20*	16-Aug-20 D		
Pre-Sink - Sub Collar Steel	1	12	27-Jul-20	08-Aug-20		
A1060	Sub Collar Strel	12	27-Jul-20	08-Aug-20 D		
Foreshaft Muck Dump	and coner alles	35	31-Jul-20	03-Sep-20	mic .	
SSCONST1040	Install Muck Dump Door		31-Jul-20	02-Aug-20 P	the Manuala	
SSCONST1040 SSCONST1030	Install Muck Dump Door Install Top Chute	2	03-Aug-20		hilfords	
SSCONST1030 SSCONST1700	Complete Vertical Base Assembly		03-Aug-20*		hilfords	
SSCONST1100	Install Structural Steel Level 1	5			MC	
SSCONST1150 SSCONST1110	Position Vertical Conveyor Base	1	05-Aug-20 08-Aug-20	09-Aug-20 D		
SSCONST1110 SSCONST1710	Position Verbial Conveyor Base Install Vertical Conveyor	20	08-Aug-20 08-Aug-20	27-Aug-20 D		4
SSCONST1710		20				
SSCONST1160 SSCONST1180	Install Outlet Chutes Install Muck Dump Structural Steel Level 2	2	10-Aug-20 12-Aug-20	11-Aug-20 P 16-Aug-20 D		
SSCONST1220	Install Muck Dump structural steel Level 2 Install Bryk Bry		12-Aug-20 17-Aug-20		hilfords	
SSCONST1220 SSCONST1240	Install Rock Box Install Structural Steel Level 3	5	17-Aug-20 20-Aug-20	19-Aug-20 P 24-Aug-20 D		
SSCONST1240 SSCONST1300	Install Structural Steel Level 3 Install Diverter Section	2	20-Aug-20 25-Aug-20	24-Aug-20 D 26-Aug-20 P		
SSCONST1300 SSCONST1320	Install Diverter Section	2	25-Aug-20 27-Aug-20		hillords	
SSCONS11320 SSCONST1340	Install Inet Chute Install Overspill Chute Section	5	27-Aug-20 28-Aug-20		hilfords	
SSCONS11340 SSCONST1050	Install Overspill Chute Section Snagging	2	28-Aug-20 02-Sep-20		hilfords	
Surface Units - Ventilation	ouattout	2	02-Sep-20 06-Jul-20 A	10-Jul-20 A	million dis	
SSCONST1500	Position & Secure CF Units	0	06-Jul-20 A	08-Jul-20 A S		
SSCONST1510	Section 3 – Setting Out and Anchoring down Interconnecting Duct Supports	0	08-Jul-20 A	10-Jul-20 A S		
SSCONST1720	Section 2 – Setting Out and Anchoring Down Ducting Supports	0	08-Jul-20 A	10-Jul-20 A S	alko .	
Surface Ducting - Ventilation		36	10-Jul-20 A	28-Aug-20		
SSCONST1540	Section 3 – Interconnecting Ducting (CPT Supply)	0	10-Jul-20 A	14-Jul-20 A S		P6 schedule/ interface shown
SSCONST1550	Section 4 - Full Installation of Pipework from Chillers to Cooling Coils	2	13-Jul-20 A		alko	FUSCIEULIE/ IIILEIJULE SIIUWII
SSCONST1560	Section 5 - Full Electrical Installation of the System	5	13-Jul-20 A	28-Jul-20 S	alko	

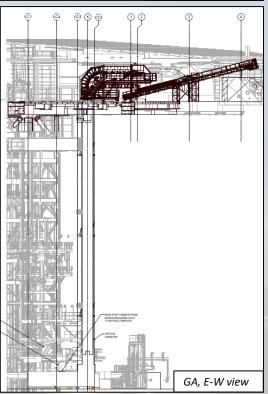

James Heslington

Foreshaft Steel Considerations

- **Procurement -** Phased procurement and delivery (based on storage areas). Back chargeable claims for issues.
- Quality ITP for manufacture and install, surface protection/ painting for exposed surfaces.
- Environmental Headframe sub surface. IP rated equipment (>55). Lighting angled downwards.
- Regulation
 - Mines Regulations 2014: Regulation 38 Safety Features of Winding Equipment
 - *Anglo American Technical Standards:* AA TS 108 (Structural integrity), AA Spec 114001 (steel structures), AA spec 114002 (construction of steel structures), AA spec 114008 (design of shaft steel work).
 - British Standards: BS 1090 Structural steel and aluminium

Muck Handling – Phase III Engineering Scope

- Concept/ philosophy, design, manufacture, (self perform and contractor install). Structural system, mechanical system, hydraulic system.
- Dump door, diverter gate, diverter chute, rock box, vibrating feeder, dewatering screen, discharge chute, overspill muck cart, grit tank, central HPU, 3x muck dump rams, 6x collar door rams, 6x collar door latches.
- Phased deliveries 3 stage delivery shop painting of selected items (rock box).
- Initial HAZOP (design), 3x HAZID for operations.
- Fire suppression system for conveyor low pressure mist deluge system (590L/min).
- Dump door retaining lugs lack of access to install (welded connection designed).
- Hydraulic system rerouting hard pipe and flexi hosing. Bracketry to support the lines.
- Collar door ram supports repositioned to ensure plumb collar doors (prevent fall back if hydraulic leak)

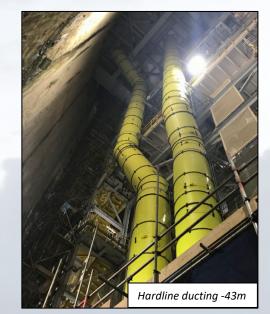


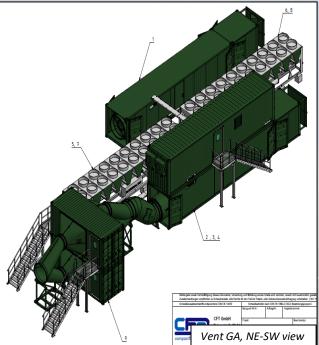
Muck Handling Conveyor System

- Free issue supplied system supplied (vertical bucket conveyor, discharge conveyor, magnetic separator).
- Guarding study and PUWER assessment completed (additional scope).
- Fire resistant belt, exposed nip points, inaccessible areas for maintenance. Study completion showed the need for: fire suppression, bearing temperature monitoring, belt replacement (Din Y changed to Din S type).
- Belt investigation into the manufacture of a compliant belt.
- Additional access control for restricted access of the area.
- Conveyor modifications plough scraper, deflector pulley, structural cross member beams all moved due to clashes on install.
- Head end structure to support discharge conveyor tail end, including fixing of structure into collar steel/ concrete.
- Discharge conveyor support frame and concrete wall muck bunker redesign (fit for purpose).

Muck Handling Crane System

- Concept, design, manufacture, installation, commissioning.
- Crane steel installation and sliding collar door installation (mechanical system with electrical motors) for fall protection. Sliding collar door concept, design, manufacture, install.
- Lifting frame (integration with 13ft Iso container), with 2 hook lifting points attached.
- Integrated crane safety system (see shaft protection).
- Dual remote operation top person/ bottom person.
- Requirement for edge protection collapsible barrier solution.
- 12 month lead time crane steel interface.


Muck Handling Considerations


- **Procurement -** Free issue of equipment, one contractor for structural, mechanical and hydraulics.
- Quality ITP for manufacture and install, shop painting of chutes (fitness for purpose), CE marks and modifications, technical queries raised.
- Environmental Monitoring of material/ water in the muck dump area (water control on site), white noise pre-starts and light beacons, vibration analysis.
- Regulation
 - *Mines Regulations 2014*: Regulation 38 Safety Features of Winding Equipment, Regulation 41 Transport Systems, Regulation 60 General Duty to Ensure Safety of Tips.
 - Anglo American Technical Standards: AA TS 109 (Guarding of belt conveyors), AA 114001 Steel structures, AA 114002 Construction of steel structures, AA 248002 Material handling equipment, AA TS 105 (Shaft Management), AA TS 108 (Plant Structures).
 - British Standards: BS EN 14120 Safety of machinery. Guards. BS EN 12100 Safety of machinery. General principles for design. BS EN 12882 Conveyor belts for general purpose use. BS EN 14973 Conveyor belts for use in underground installations. BS EN 13001 Cranes. General design. BS EN 15011 Cranes. Bridge and gantry cranes
 - UK Coal: CR13, Codes and Rules for under ground conveyors, 2006

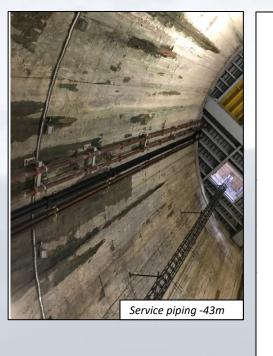
Ventilation – Phase IV Engineering Scope

- Installation of system and modification, design/ supply of ducting.
- Fan system (force and exhaust) with chillers, 11kV feed to transformer, hard line ducting to collar, plastic ducting to -43m, transition piece and bagging to SBR. Phased deliveries equipment, ducting in 3 phases to optimise lead time (hard line long lead time).
- System to provide a minimum of 26m3 air supply at 4 degrees (surface).
- Hardline ducting used to -43m reduced friction, increased leakage. No lagging.
- Exhaust duct collapse during commissioning stiffening sections used.
- Transition piece (GRP) from steel to hardline at 0m and hardline to lay flat at -48m.
- 'Sweetener' fan to provide airflow at -43m, lay flat bagging used and routing changed steel elbow at -40m to provide secure connection.
- ATEX exhaust fan (M2 zone in airflow).

Exhaust Fan (1x110 kW), Supply Fan 2x (2x90 kW), Supply Fan 1x(1x90 kW), Sinking Chiller 2x - (I) 1x164 kW, (II) 1x234 kW

Ventilation Considerations

- **Procurement -** Free issue of equipment, one contractor for mechanical and electrical. Ducting design, supply (single supply vendor for ducting on site). Commissioning complete by supplier.
- Quality ITP for manufacture and install. FAT for equipment (UK based chiller vendor). Planned preventative maintenance in place.
- Environmental Noise and dust silencer baffle units on fans. Netting of area to protect from nesting (emphasis during swallow nesting season). Temporary containerised equipment juniper green (RAL 140 20 20). Plume protection collar house enclosure/ dust collection system.

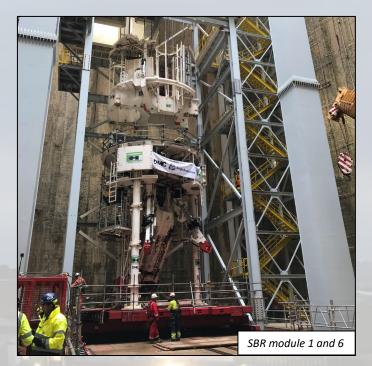

Regulation

- Mines Regulations 2014: Regulation 43 Ventilation, Regulation 59 Working Plans, Sections, Vent Plans and Geological Map
- *Anglo American Technical Standards:* Site standard/ Managers Rules, AA TS 105 (Shaft Management), AA standard being developed by site vent engineer.
- *British Standards:* BS 5885 Automatic Gas Burners, BS EN 14120 Safety of machinery. Guards.

SBR Sinking- Phase V System Description

- Foreshaft: 6" compressed air line, 4" water line, 6" dewatering line, 2 x 8" concrete lines, 2 x 8" grout lines, 2 x 8" additional lines (for cooling).
- **Pre sink**: 1 slick line down shaft 8", 1 drain line (water rings) 4", 1 process water 4", 1 dewatering 6", 1 compressed air 6"
- SBR #3 and #4: 69m length, 2x movable utility platforms. 7.25m shaft -7.25m shaft.
- ATEX modifications to machine: M2 zone at face deck 4.
- Ventilation ducting modification (hardline to bagging with cassette).
- Stabiliser modifications to allow for access during inset works.

Compressed air sitewide system (10bar working pressure), process water sitewide water (max 350L/min), dewatering system (max 980L/min) mixer and concrete pump at -43m.



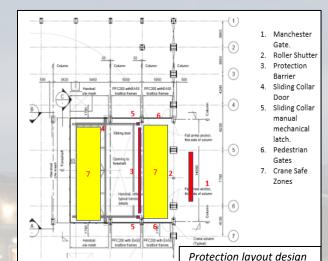
James Heslington

SBR Sinking Shaft Equipment/ Pre Start Installation

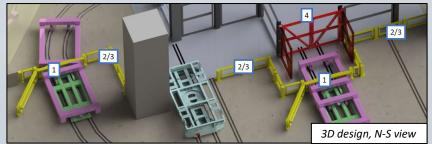
- SBR movement using self propelled movement transportation machines (SPMT's). Lifted onto hydraulic skating system in the fore shaft (-43m).
- Module 6 used as a lifting frame (roped up), SBR modules lifted into pre sink. 7 modules making up the SBR.
- Structural strands installed (providing rigidity).
- Ropes for guiding conveyances. Xheads 1.9m/ 1.5m (OLKO winder for mucking and emergency egress, sinking hoist for general access/ slinging).
- Hoist speeds max 9m/s, creep 0.6m/s, super creep 0.3m/s.
- Concrete buckets for back-up to slick line.
- Probe drilling initial 17.2m excavation cyclic mining.
- 7.25m former for concrete pours (curb E ring), 3.6m height).

SBR Sinking Considerations

- **Procurement** Phased delivery service lengths of first 100m, followed by 300m spans. Piping and lagging separate wrap/ Velcro-similar strapped lagging. SBR module construction at surface prior to installing in shaft.
- **Quality -** ITP for manufacture and install. Pressure/ leak testing for handover. Planned preventative maintenance in place. ATEX register for sign off.
- Environment Usage: access for maintenance, environmental discharge controls on the bench.
- Regulation
 - *Mines Regulations 2014*: Regulation 36 Shaft Construction, Regulation 37 Equipment relevant shafts and outlets
 - Anglo American Standards: AA TS 105 (Shaft Management), AA 282003 (Design of Conveyances), AA 2820004 (Fabrication of Conveyances), AA 282005 (Use of Conveyances)
 - *British Standards:* BS 1090 Structural/construction steel and aluminium products (Class 2 install)

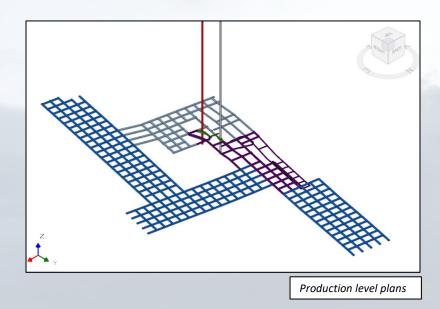

Shaft Protection – Phase VI Engineering Scope

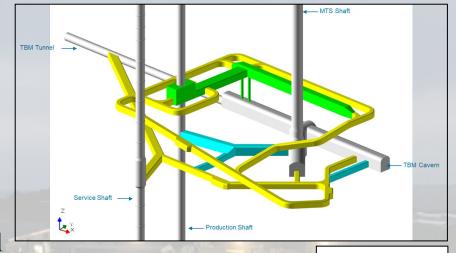
- Protection systems concept, design, supply. Self perform install.
- Protection system to create a multi-layer system surrounding the shaft environment philosophy created,
- Risk: Surface: haul trucks, telehandlers, loaders. -43m: telehandler/ forklift, rail carts.
- Safety integrity level (SIL) rated systems SIL 2. PILZ switches, DOLD solenoid switches.
- Rail cart track gauge accuracy carts poor running on tracks. Install of bolt-down track for ease of usage.
- Collapsing barrier instrumentation locations crank arm location.
- Collapsing barrier backing pin distorting addition of 10mm plate for strength and further retaining pin to assist the lowering/ gravity feed.
- Welded connection for collar door latch due to access.


Exterior Manchester gate – 32t at 20mph, Roller shutter door – access control, Interior barrier – edge protection, Sliding collar door latch – 32t at 5mph, Sliding collar door – motor gear system, Interlocked pedestrian gates – DOLD switches, -43m Manchester gate and rail buffer stop – 20t at 5mph

James Heslington

"Construction of a Deep Shaft Sinking Operation in the United Kingdom, 2021"


direction layout design


Shaft Protection Considerations

- **Procurement** Separate suppliers based upon lead times and design. Usage of Anglo structural engineer to assist with 3rd party load design checks. Staggered installation/ delivery.
- **Quality** ITP for manufacture and install (safety critical equipment). Planned preventative maintenance in place.
- Environmental Usage: ergonomics, design life, function. Rail buffer stops for compression. Additional rated barriers for full protection of the shaft brattice area. Colouration – traffic yellow and 3M strips for increased visibility.
- Regulation
 - Mines Regulations 2014: Regulation 41 Transport Systems, Regulation 42 Transport Rules
 - *Anglo American Technical Standards:* AA TS 105 (Shaft Management), AA TS 108 (Plant Structures), AA 114001 (Steel Structures)
 - *British Standards:* BS 1090 Structural/construction steel and aluminium products (Class 2 install). PAS 69 Guidance for the selection, installation and use of vehicle security barrier systems

Summary/ Progression Personal Outcomes and Development

- *Process implementation* philosophy, design, tender, detailed design, manufacture, install, QA, commissioning.
- Working relationships optimisation/ development of designs new concepts/ technology (collapsing protective fence/ vertical conveyor).
- *Service shaft "Completions Team" involvement* schedule/ construction efficiency and drive for completion.
- Engineering change notices for any scope change/ remedial works.
- Commissioning snagging works/ operational requirement modifications. *Fitness for purpose*.
- Shaft inset development (-360m) and lateral development, tubbing transition, shaft bottom development.
- *Constructability* schedule/ cost Production shaft lessons learnt value engineering (UK based, local companies/ solutions); usage of different muck handling system mechanical chain bucket system/ larger bunker.

Questions?

Thank you.

Jwheslington@gmail.com James.heslington@angloamerican.com 07949 896607